Python知識(shí)分享網(wǎng) - 專業(yè)的Python學(xué)習(xí)網(wǎng)站 學(xué)Python,上Python222
使用自我監(jiān)督學(xué)習(xí)的亞米分辨率冠層高度圖和用于航空和GEDI激光雷達(dá)訓(xùn)練的視覺轉(zhuǎn)換器 PDF 下載
匿名網(wǎng)友發(fā)布于:2025-06-01 10:39:11
(侵權(quán)舉報(bào))
(假如點(diǎn)擊沒反應(yīng),多刷新兩次就OK!)

使用自我監(jiān)督學(xué)習(xí)的亞米分辨率冠層高度圖和用于航空和GEDI激光雷達(dá)訓(xùn)練的視覺轉(zhuǎn)換器 圖1

 

 

資料內(nèi)容:

 

Highlights
Sub-meter resolution canopy height maps using self-supervised learn-
ing and a vision transformer trained on Aerial and GEDI Lidar
Jamie Tolan1, Hung-I Yang1, Ben Nosarzewski1, Guillaume Couairon2 , Huy
Vo2 , John Brandt3, Justine Spore3, Sayantan Majumdar4, Daniel Haziza2,
Janaki Vamaraju1, Theo Moutakani2, Piotr Bojanowski2, Tracy Johns1, Brian
White1, Tobias Tiecke1, Camille Couprie2

0.5 meter resolution canopy height maps at jurisdictional scale are re-
leased.

Improved performance from Self-Supervised Learning (SSL) and vision
transformers.

First use of SSL and vision transformers for canopy height estimation.

Low resolution GEDI and high resolution aerial lidar predictions are
combined.

Model generalises well to aerial imagery, even though trained with satel-
lite images.